skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thukral, Varun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026